
Getting started with the glmmADMB package

Ben Bolker, Hans Skaug, Arni Magnusson, Anders Nielsen

January 2, 2012

1 Introduction/quick start

glmmADMB is a package, built on the open source AD Model Builder nonlinear
fitting engine, for fitting generalized linear mixed models and extensions.

� response distributions: Poisson, binomial, negative binomial (NB1 and
NB2 parameterizations), Gamma, Beta, truncated Poisson and negative
binomial; Gaussian coming soon

� link functions: log, logit, probit, cloglog, inverse, identity

� zero-inflation (models with a constant zero-inflation value only); hurdle
models via truncated Poisson/NB

� single or multiple (nested or crossed) random effects

� offsets

� post-fit MCMC chain for characterizing uncertainty

As of version 0.6.5, the package has been greatly revised to allow a wider
range of response and link functions and to allow models with multiple random
effects. For now, the resulting package is slower than the old (single-random-
effect version), but we hope to increase its speed in the future.

In order to use glmmADMB effectively you should already be reasonably fa-
miliar with generalized linear mixed models (GLMMs), which in turn requires
familiarity with (i) generalized linear models (e.g. the special cases of logistic,
binomial, and Poisson regression) and (ii) ‘modern’ mixed models (those work-
ing via maximization of the marginal likelihood rather than by manipulating
sums of squares).

In order to fit a model in glmmADMB you need to:

� specify a model for the fixed effects, in the standard R (Wilkinson-Rogers)
formula notation (see ?formula or Section 11.1 of the Introduction to R.
Formulae can also include offsets.

1

http://admb-project.org
http://cran.r-project.org/doc/manuals/R-intro.pdf

� specify a model for the random effects, in the notation that is common to
the nlme and lme4 packages. Random effects are specified as e|g, where
e is an effect and g is a grouping factor (which must be a factor variable,
or a nesting of/interaction among factor variables). For example, the
formula would be 1|block for a random-intercept model or time|block

for a model with random variation in slopes through time across groups
specified by block. A model of nested random effects (block within site)
would be 1|site/block; a model of crossed random effects (block and
year) would be (1|block)+(1|year).

Random effects can be specified either in a separate random argument (as
in nlme) or as part of the model formula (as in lme4).

� choose the error distribution by specifying the family (as a string: e.g.
"poisson" or "binomial")

� specify a link function (as a string: e.g. "logit" or "log".

� optionally specify that zero-inflation is present zeroInflation=TRUE. In
the current version, zero-inflation can only be specified as a single constant
term across the entire model — i.e. it cannot vary across groups or with
covariates.

2 Owls data

These data, taken from [3] and ultimately from [2], quantify the number of
negotiations among owlets (owl chicks) in different nests prior to the arrival of
a provisioning parent as a function of food treatment (deprived or satiated), the
sex of the parent, and arrival time. The total number of calls from the nest is
recorded, along with the total brood size, which is used as an offset to allow the
use of a Poisson response.

Since the same nests are measured repeatedly, the nest is used as a random
effect. The model can be expressed as a zero-inflated generalized linear mixed
model (ZIGLMM).

First we draw some pictures (Figures 1, 2).
Load the glmmADMB package to get access to the Owls data set; load the

ggplot2 graphics package.

> library(glmmADMB)

> library(ggplot2)

Various small manipulations of the data set: (1) reorder nests by mean
negotiations per chick, for plotting purposes; (2) add log brood size variable
(for offset); (3) rename response variable.

> Owls <- transform(Owls,

Nest=reorder(Nest,NegPerChick),

logBroodSize=log(BroodSize),

NCalls=SiblingNegotiation)

2

Negotiations per chick

N
es

t Forel
Jeuss

Etrabloz
AutavauxTV

StAubin
Payerne

LesPlanches
Bochet

Henniez
Champmartin

Seiry
GDLV

Oleyes
Franex

Marnand
Yvonnand

Lucens
Chevroux

Montet
Trey

Gletterens
Rueyes

CorcellesFavres
Murist

Lully
ChEsard

Sevaz

Forel
Jeuss

Etrabloz
AutavauxTV

StAubin
Payerne

LesPlanches
Bochet

Henniez
Champmartin

Seiry
GDLV

Oleyes
Franex

Marnand
Yvonnand

Lucens
Chevroux

Montet
Trey

Gletterens
Rueyes

CorcellesFavres
Murist

Lully
ChEsard

Sevaz

Female

0 2 4 6 8

Male

0 2 4 6 8

D
eprived

S
atiated

obs

1

3

5

7

9

Figure 1: Basic view of owl data (arrival time not shown).

3

Arrival time

N
eg

ot
ia

tio
ns

 p
er

 c
hi

ck

0

2

4

6

8

22 23 24 25 26 27 28 29

obs

1

2

FoodTreatment

Deprived

Satiated

SexParent

Female

Male

Figure 2: Basic view of owl data, #2 (nest identity not shown)

4

Now fit some models:
The basic glmmadmb fit — a zero-inflated Poisson model.

> fit_zipoiss <- glmmadmb(NCalls~(FoodTreatment+ArrivalTime)*SexParent+

offset(logBroodSize)+(1|Nest),

data=Owls,

zeroInflation=TRUE,

family="poisson")

> summary(fit_zipoiss)

Call:

glmmadmb(formula = NCalls ~ (FoodTreatment + ArrivalTime) * SexParent +

offset(logBroodSize) + (1 | Nest), data = Owls, family = "poisson",

zeroInflation = TRUE)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.8562 0.3871 7.38 1.6e-13 ***

FoodTreatmentSatiated -0.3314 0.0635 -5.22 1.8e-07 ***

ArrivalTime -0.0807 0.0156 -5.18 2.3e-07 ***

SexParentMale 0.2882 0.3575 0.81 0.42

FoodTreatmentSatiated:SexParentMale 0.0740 0.0761 0.97 0.33

ArrivalTime:SexParentMale -0.0150 0.0143 -1.05 0.29

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Number of observations: total=599, Nest=27

Random effect variance(s):

$Nest

(Intercept)

(Intercept) 0.14001

Zero-inflation: 0.25833 (std. err.: 0.018107)

Log-likelihood: -1985.3

The coefplot2 package knows about glmmadmb fits:

> library(coefplot2)

> coefplot2(fit_zipoiss)

5

Regression estimates
−0.5 0.0 0.5 1.0

FoodTreatmentSatiated

ArrivalTime

SexParentMale

FoodTreatmentSatiated:SexParentMale

ArrivalTime:SexParentMale

●

●

●

●

●

We can also try a standard zero-inflated negative binomial model; the default
is the “NB2” parameterization (variance = µ(1 + µ/k)).

> fit_zinbinom <- glmmadmb(NCalls~(FoodTreatment+ArrivalTime)*SexParent+

offset(logBroodSize)+(1|Nest),

data=Owls,

zeroInflation=TRUE,

family="nbinom")

Alternatively, use an “NB1” fit (variance = φµ).

> fit_zinbinom1 <- glmmadmb(NCalls~(FoodTreatment+ArrivalTime)*SexParent+

offset(logBroodSize)+(1|Nest),

data=Owls,

zeroInflation=TRUE,

family="nbinom1")

Relax the assumption that total number of calls is strictly proportional to
brood size (i.e. using log(brood size) as an offset):

> fit_zinbinom1_bs <- glmmadmb(NCalls~(FoodTreatment+ArrivalTime)*SexParent+

BroodSize+(1|Nest),

data=Owls,

zeroInflation=TRUE,

family="nbinom1")

Every change we have made so far improves the fit — changing distributions
improves it enormously, while changing the role of brood size makes only a
modest (-1 AIC unit) difference:

> library(bbmle)

> AICtab(fit_zipoiss,fit_zinbinom,fit_zinbinom1,fit_zinbinom1_bs)

6

dAIC df

fit_zinbinom1_bs 0.0 10

fit_zinbinom1 1.2 9

fit_zinbinom 68.7 9

fit_zipoiss 637.0 8

Compare the parameter estimates:

> vn <- c("food","arrivaltime","sex","food:sex","arrival:sex","broodsize")

> coefplot2(list(ZIP=fit_zipoiss,

ZINB=fit_zinbinom,

ZINB1=fit_zinbinom1,

ZINB1_brood=fit_zinbinom1_bs),

varnames=vn,

legend=TRUE)

Regression estimates
−2 −1 0 1 2

food

arrivaltime

sex

food:sex

arrival:sex

broodsize

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ZINB1_brood
ZINB1
ZINB
ZIP

2.1 Hurdle models

In contrast to zero-inflated models, hurdle models treat zero-count and non-
zero outcomes as two completely separate categories, rather than treating the
zero-count outcomes as a mixture of structural and sampling zeros.

As of version 0.6.7.1, glmmADMB includes truncated Poisson and negative
binomial familes and hence can fit hurdle models. The two parts of the model

7

have to be fitted separately, however. First we fit a truncated distribution to
the non-zero outcomes:

> fit_hnbinom1 <- glmmadmb(NCalls~(FoodTreatment+ArrivalTime)*SexParent+

BroodSize+(1|Nest),

data=subset(Owls,NCalls>0),

family="truncnbinom1")

Then we fit a model to the binary part of the data (zero vs. non-zero). In
this case, I started by fitting a simple (intercept-only) model with intercept-
level random effects only. This comes a bit closer to matching the previous
(zero-inflation) models, which treated zero-inflation as a single constant level
across the entire data set (in fact, leaving out the random effects and just using
glmmADMB(nz~1,data=Owls,family="binomial"), or glm(nz~1,data=Owls,family="binomial"),
would be an even closer match). I then fitted a more complex binary model —
this is all a matter of judgment about how complex a model it’s worth trying
to fit to a given data set — but it does look as though the zero-inflation varies
with arrival time and satiation.

> Owls$nz <- as.numeric(Owls$NCalls>0)

> fit_count <- glmmadmb(nz~1+(1|Nest),

data=Owls,

family="binomial")

> fit_ccount <- glmmadmb(nz~(FoodTreatment+ArrivalTime)*SexParent+(1|Nest),

data=Owls,

family="binomial")

> AICtab(fit_count,fit_ccount)

> summary(fit_ccount)

2.2 MCMC fitting

AD Model Builder has the capability to run a post hoc Markov chain to assess
variability — that is, it uses the MLE as a starting point and the estimated
sampling distribution (variance-covariance matrix) of the parameters as a can-
didate distribution, and “jumps around” the parameter space in a consistent
way (Metropolis-Hastings?) to generate a series of samples from a posterior
distribution of the parameter distribution (assuming flat priors: please see the
ADMB documentation, or [1], for more details).

This is very convenient, but tends to be a bit slow. In the example below, I
ran a chain of 50,000 MCMC iterations — on examination, the default chain of
1000 iterations was much too short — which took about 1.92 hours on a modern
(2011) laptop.

> fit_zinbinom1_bs_mcmc <- glmmadmb(NCalls~(FoodTreatment+ArrivalTime)*SexParent+

BroodSize+(1|Nest),

data=Owls,

zeroInflation=TRUE,

8

family="nbinom1",

mcmc=TRUE,

mcmc.opts=mcmcControl(mcmc=50000))

Convert the MCMC chain to an mcmc object which the coda package can
handle:

> library(coda)

> m <- as.mcmc(fit_zinbinom1_bs_mcmc$mcmc)

Look at the trace plots.

> library(scapeMCMC)

> plotTrace(m)

pz beta.1 beta.2 beta.3 beta.4 beta.5 beta.6

beta.7 tmpL log_alpha u.01 u.02 u.03 u.04

u.05 u.06 u.07 u.08 u.09 u.10 u.11

u.12 u.13 u.14 u.15 u.16 u.17 u.18

u.19 u.20 u.21 u.22 u.23 u.24 u.25

u.26 u.27

The Geweke diagnostic gives Z scores for each variable for a comparison
between (by default) the first 10% and last 50% of the chain

> (gg <- geweke.diag(m))

Fraction in 1st window = 0.1

Fraction in 2nd window = 0.5

pz beta.1 beta.2 beta.3 beta.4 beta.5 beta.6 beta.7

9

1.05890 -0.02392 0.52422 1.26288 -1.42940 -0.10490 -0.42814 0.23393

tmpL log_alpha u.01 u.02 u.03 u.04 u.05 u.06

0.40161 -1.64034 -0.54043 -0.10781 0.15012 0.38768 -0.21563 0.36554

u.07 u.08 u.09 u.10 u.11 u.12 u.13 u.14

0.31533 0.34659 -0.34155 -0.09860 0.15218 0.18873 0.16287 0.20951

u.15 u.16 u.17 u.18 u.19 u.20 u.21 u.22

0.16704 0.19575 0.32859 0.10631 0.13427 -0.14341 0.24088 -0.90355

u.23 u.24 u.25 u.26 u.27

0.43930 1.15159 0.34327 -0.23469 0.00186

> summary(2*pnorm(abs(gg$z),lower.tail=FALSE))

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.1009 0.6685 0.8096 0.7134 0.8790 0.9985

The most frequently used diagnostic, Gelman-Rubin (gelman.diag), re-
quires multiple chains. The full set of diagnostic functions available in coda

is:

[1] autocorr.diag gelman.diag geweke.diag heidel.diag raftery.diag

effectiveSize gives the effective length of the chain for each variable, i.e.
the number of samples corrected for autocorrelation:

> range(effectiveSize(m))

[1] 316.7461 702.1153

HPDinterval gives the highest posterior density (credible interval):

> head(HPDinterval(m))

lower upper

pz 0.04086837 0.1350379

beta.1 39.65328510 48.7512345

beta.2 -10.48568580 -6.1049157

beta.3 -8.21234181 -4.3009885

beta.4 -1.04757046 3.2400361

beta.5 0.88345874 8.9078930

You might prefer inferences based on the quantiles instead:

> head(t(apply(m,2,quantile,c(0.025,0.975))))

2.5% 97.5%

pz 0.04555855 0.1458387

beta.1 39.87602463 49.0420272

beta.2 -10.60885261 -6.1931622

beta.3 -8.46562399 -4.3939505

beta.4 -0.81607569 3.5588189

beta.5 1.55442942 9.8495245

10

You can also look at density plots or pairwise scatterplots (“splom” in lat-

tice and scapeMCMC, for Scatterplot matrices), although these are not partic-
ularly useful for this large a set of parameters:

The MCMC output in glmmADMB is currently in a very raw form — in par-
ticular, the internal names and variants of the parameters are used:

pz zero-inflation parameter

beta fixed-effect parameter estimates: note that these are the versions of the
parameters fitted internally, using an orthogonalized version of the original
design matrix, not the original coefficients (if this means nothing to you,
as it might well, just accept that these are transformed versions of the
parameters).

tmpL variance-covariance parameters

log alpha log of overdispersion/scale parameter

u random effects (unscaled)

If you need to use the MCMC output and can’t figure out how, please contact
the maintainers and encourage them to work on them some more (!)

3 Other information

The standard set of accessors is available:

coef extract (fixed-effect) coefficients

fixef a synonym for coef, for consistency with nlme/lme4

ranef extract random effect coefficients (“BLUPs” or “conditional modes”)

residuals extract (Pearson) residuals

fitted fitted values

predict predicted values (based only on fixed effects, not on random effects),
possibly with standard errors (based only on uncertainty of fixed effects),
possibly for new data

logLik extract log-likelihood

AIC extract AIC

summary print summary

stdEr extract standard errors of coefficients

vcov extract estimated variance-covariance matrix of coefficients

VarCorr extract variance-covariance matrices of random effects

11

confint extract confidence intervals of fixed-effect coefficients

Missing: specifying starting values; MCMC; general troubleshooting (extra
arguments, running outside R)

References

[1] Benjamin M. Bolker. Ecological Models and Data in R. Princeton University
Press, Princeton, NJ, 2008.

[2] A. Roulin and L. Bersier. Nestling barn owls beg more intensely in the pres-
ence of their mother than in the presence of their father. Animal Behaviour,
74:1099–1106, 2007.

[3] Alain F. Zuur, Elena N. Ieno, Neil J. Walker, Anatoly A. Saveliev, and
Graham M. Smith. Mixed Effects Models and Extensions in Ecology with R.
Springer, 1 edition, March 2009.

12

	Introduction/quick start
	Owls data
	Hurdle models
	MCMC fitting

	Other information

